Startup Commercializes Engineered Tissue to Transform Medical Device Tech

Startup Commercializes Engineered Tissue to Transform Medical Device Tech
Spread the love

University of Minnesota Technology Commercialization reported the formal launch of Vascudyne Inc., a startup company situated in Stillwater, Minn., concentrated on the advancement of biologically engineered tissue for medical device and therapeutics applications. The technology offers a regenerative limit inaccessible as of not long ago in materials and gadgets utilized for medical treatment.

Vascudyne’s technology depends on discoveries by University researcher Robert Tranquillo, Ph.D., professor in the departments of Biomedical Engineering and Chemical Engineering and Materials Science in the College of Science and Engineering, and researchers in his lab, Zeeshan Syedain, Ph.D., senior research associate, and Lee Meier, B.S., staff scientist and present MD/Ph.D. understudy.

Vascudyne Engineered Tissue depends on decellularized collagenous tissue developed in a straightforward bioreactor from human dermal fibroblasts in fibrin gel. The resulting tissue has natural and mechanical properties very similar to native tissue and should regenerate and develop with the patient dependent on preclinical studies. This totally biological, off-the-shelf biomimetic material has the potential to move medical device technologies beyond the supply, durability, and hemocompatibility limitations of current synthetic and native tissue options.

“We are excited about the prospects of this material grown from skin cells becoming a clinical reality with its commercialization by Vascudyne,” said Tranquillo, “given its success in our preclinical studies and its potential as a platform technology for many applications.”

The technology was as of late granted a few patents and effectively utilized in University preclinical studies as a heart valve and a vascular graft, which demonstrated unprecedented somatic development. The vascular graft studies were distributed in Nature Communications and Science Translational Medicine.

“The need for cardiovascular replacement parts has never been greater, and this need is expected to grow significantly in the near future,” said Luke Brewster, MD, Ph.D., assistant professor of surgery in Division of Vascular Surgery at the Emory University School of Medicine, who was not involved in developing the technology. “Biologically compatible replacement tissue for cardiovascular disease is the Holy Grail for patients and clinicians, who have not seen a full step forward in these technologies since the 1950s. Professor Tranquillo’s innovative cardiovascular tissue platform is well positioned to help the field take this important step into the future.”

Vascudyne has finished Phase I of its technology plan, the translation of the technology from the University setting to its Stillwater facility, and has implemented pilot-scale manufacturing capable of producing engineered tissue to support preclinical animal studies and first-in-human clinical trials.

Vascudyne plans to initially pursue two products utilizing the University-developed engineered tissue: a new generation of small-diameter vascular conduits and a transcatheter-delivered valve intended for right-side heart applications. The two tasks are in getting ready for preclinical investigations in 2019, to be followed by regulatory submissions for early clinical trials.

Next, the organization will keep optimizing and developing its activities while executing this material into novel medical device designs. For this work, Vascudyne is offering limited opportunities for commercial clients to pursue this novel material in their own medical device technology.